8 research outputs found

    Deep learning for prediction of colorectal cancer outcome: a discovery and validation study

    Get PDF
    Background Improved markers of prognosis are needed to stratify patients with early-stage colorectal cancer to refine selection of adjuvant therapy. The aim of the present study was to develop a biomarker of patient outcome after primary colorectal cancer resection by directly analysing scanned conventional haematoxylin and eosin stained sections using deep learning. Methods More than 12 000 000 image tiles from patients with a distinctly good or poor disease outcome from four cohorts were used to train a total of ten convolutional neural networks, purpose-built for classifying supersized heterogeneous images. A prognostic biomarker integrating the ten networks was determined using patients with a non-distinct outcome. The marker was tested on 920 patients with slides prepared in the UK, and then independently validated according to a predefined protocol in 1122 patients treated with single-agent capecitabine using slides prepared in Norway. All cohorts included only patients with resectable tumours, and a formalin-fixed, paraffin-embedded tumour tissue block available for analysis. The primary outcome was cancer-specific survival. Findings 828 patients from four cohorts had a distinct outcome and were used as a training cohort to obtain clear ground truth. 1645 patients had a non-distinct outcome and were used for tuning. The biomarker provided a hazard ratio for poor versus good prognosis of 3·84 (95% CI 2·72–5·43; p<0·0001) in the primary analysis of the validation cohort, and 3·04 (2·07–4·47; p<0·0001) after adjusting for established prognostic markers significant in univariable analyses of the same cohort, which were pN stage, pT stage, lymphatic invasion, and venous vascular invasion. Interpretation A clinically useful prognostic marker was developed using deep learning allied to digital scanning of conventional haematoxylin and eosin stained tumour tissue sections. The assay has been extensively evaluated in large, independent patient populations, correlates with and outperforms established molecular and morphological prognostic markers, and gives consistent results across tumour and nodal stage. The biomarker stratified stage II and III patients into sufficiently distinct prognostic groups that potentially could be used to guide selection of adjuvant treatment by avoiding therapy in very low risk groups and identifying patients who would benefit from more intensive treatment regimes

    Soluble AXL as a marker of disease progression and survival in melanoma.

    No full text
    Receptor tyrosine kinase AXL is a one-pass transmembrane protein upregulated in cancers and associated with lower survival and therapy resistance. AXL can be cleaved by the A Disintegrin and Metalloproteinases (ADAM)10 and ADAM17, yielding a soluble version of the protein. Elevated soluble AXL (sAXL) has been reported to be associated with disease progression in hepatocellular carcinoma, renal cancer, neurofibromatosis type 1 and inflammatory diseases. In the present work, we analyzed sAXL levels in blood from melanoma patients and showed that sAXL increases with disease progression. Additionally, increased sAXL levels were found correlated with shorter two-year survival in stage IV patients treated with ipilimumab. Furthermore, we showed that sAXL levels were related to the percentage of cells expressing AXL in resected melanoma lymph node metastases. This finding was verified in vitro, where sAXL levels in the cell media corresponded to AXL expression in the cells. AXL inhibition using the small-molecular inhibitor BGB324 reduced sAXL levels, while the cellular expression was elevated through increased protein stability. Our findings signify that quantification of sAXL blood levels is a simple and easily assessable method to determine cellular AXL levels and should be further evaluated for its use as a biomarker of disease progression and treatment response

    AXL inhibition improves BRAF-targeted treatment in melanoma

    Get PDF
    More than half of metastatic melanoma patients receiving standard therapy fail to achieve a long-term survival due to primary and/or acquired resistance. Tumor cell ability to switch from epithelial to a more aggressive mesenchymal phenotype, attributed with AXLhigh molecular profle in melanoma, has been recently linked to such event, limiting treatment efcacy. In the current study, we investigated the therapeutic potential of the AXL inhibitor (AXLi) BGB324 alone or in combination with the clinically relevant BRAF inhibitor (BRAFi) vemurafenib. Firstly, AXL was shown to be expressed in majority of melanoma lymph node metastases. When treated ex vivo, the largest reduction in cell viability was observed when the two drugs were combined. In addition, a therapeutic beneft of adding AXLi to the BRAF-targeted therapy was observed in pre-clinical AXLhigh melanoma models in vitro and in vivo. When searching for mechanistic insights, AXLi was found to potentiate BRAFiinduced apoptosis, stimulate ferroptosis and inhibit autophagy. Altogether, our fndings propose AXLi as a promising treatment in combination with standard therapy to improve therapeutic outcome in metastatic melanoma

    Effects of faecal microbiota transplantation on small intestinal mucosa in systemic sclerosis

    Full text link
    OBJECTIVES In systemic sclerosis (SSc), gastrointestinal tract (GIT) involvement is a major concern, with no disease-modifying and limited symptomatic therapies available. Faecal microbiota transplantation (FMT) represents a new therapeutic option for GIT-affliction in SSc, showing clinical promise in a recent controlled pilot trial. Here, we aim to investigate effects of FMT on duodenal biopsies collected from SSc patients by immunohistochemistry and transcriptome profiling. METHODS We analysed duodenal biopsies obtained pre- (week 0) and post-intervention (weeks 2 and 16) from nine SSc patients receiving intestinal infusion of FMT (n = 5) or placebo (n = 4). The analysis included immunohistochemistry (IHC) with a selected immune function and fibrosis markers, and whole biopsy transcriptome profiling. RESULTS In patients receiving FMT, the number of podoplanin and CD64-expressing cells in the mucosa were lower at week 2 compared to baseline. This decline in podoplanin- (r = 0.94) and CD64-positive (r = 0.89) cells correlated with improved patient-reported lower GIT symptoms. Whole biopsy transcriptome profiling from week 2 showed significant enrichment of pathways critical for cellular and endoplasmic reticulum stress responses, microvillus and secretory vesicles, vascular and sodium-dependent transport, and circadian rhythm. At week 16, we found enrichment of pathways mandatory for binding activity of immunoglobulin receptors, T-cell receptor complex, and chemokine receptor, as well as response to zinc-ions. We found that 25 genes, including Matrix metalloproteinase-1 were upregulated at both week 2 and week 16. CONCLUSION Combining selective IHC and unbiased gene expression analyses, this exploratory study highlights the potential for disease-relevant organ effects of FMT in SSc patients with GIT involvement

    A Three-dimensional Ex Vivo Viability Assay Reveals a Strong Correlation Between Response to Targeted Inhibitors and Mutation Status in Melanoma Lymph Node Metastases

    No full text
    Although clinical management of melanoma has changed considerably in recent years, intrinsic treatment resistance remains a severe problem and strategies to design personal treatment regimens are highly warranted. We have applied a three-dimensional (3D) ex vivo drug efficacy assay, exposing disaggregated cells from 38 freshly harvested melanoma lymph node metastases and 21 patient derived xenografts (PDXs) to clinical relevant drugs for 7 days, and examined its potential to evaluate therapy response. A strong association between Vemurafenib response and BRAF mutation status was achieved (P ex vivo results, two tumors diagnosed as BRAF wild-type by routine pathology examinations had to be re-evaluated; one was subsequently found to have a complex V600E mutation, the other a double BRAF mutation (V600E/K601 N). No BRAF inhibitor resistance mechanisms were identified, but PIK3CA and NF1 mutations were identified in two highly responsive tumors. Concordance between ex vivo drug responses using tissue from PDXs and corresponding patient tumors demonstrate that PDX models represent an indefinite source of tumor material that may allow ex vivo evaluation of numerous drugs and combinations, as well as studies of underlying molecular mechanisms. In conclusion, we have established a rapid and low cost ex vivo drug efficacy assay applicable on tumor tissue from patient biopsies. The 3D/spheroid format, limiting the influence from normal adjacent cells and allowing assessment of drug sensitivity to numerous drugs in one week, confirms its potential as a supplement to guide clinical decision, in particular in identifying non-responding patients
    corecore